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Abstract

In this paper, we revisit the large-scale constrained linear re-
gression problem and propose faster methods based on some
recent developments in sketching and optimization. Our al-
gorithms combine (accelerated) mini-batch SGD with a new
method called two-step preconditioning to achieve an approx-
imate solution with a time complexity lower than that of the
state-of-the-art techniques for the low precision case. Our
idea can also be extended to the high precision case, which
gives an alternative implementation to the Iterative Hessian
Sketch (IHS) method with significantly improved time com-
plexity. Experiments on benchmark and synthetic datasets
suggest that our methods indeed outperform existing ones
considerably in both the low and high precision cases.

Introduction
Since many problems in compressed sensing and machine
learning can be formulated as a constrained linear regres-
sion problem, such as SVM, LASSO, signal recovery (Pi-
lanci and Wainwright 2015), large scale linear regression
with constraints now becomes one of the most popular and
basic models in Machine Learning and has received a great
deal of attentions from both the Machine Learning and The-
oretical Computer Science communities. Formally, the prob-
lem can be defined as follows,

min
x∈W

f(x) = ∥Ax− b∥22,

where A is a matrix in Rn×d with ed > n > d andW is a
closed convex set. The goal is to find an x ∈ W such that
f(x) ≤ (1+ ϵ)minx∈W f(x) or f(x)−minx∈W f(x) ≤ ϵ.

On one hand, recent developments on first-order stochas-
tic methods, such as Stochastic Dual Coordinate Ascent
(SDCA) (Shalev-Shwartz and Zhang 2013) and Stochastic
Variance Reduced Gradient (SVRG) (Johnson and Zhang
2013), have made significant improvements on the conver-
gence speed of large scale optimization problems in prac-
tice. On the other hand, random projection and sampling are
commonly used theoretical tools in many optimization prob-
lems as preconditioner, dimension reduction or sampling
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techniques to reduce the time complexity. This includes low
rank approximation (Musco and Musco 2015), SVM (Paul
et al. 2013), column subset selection (Boutsidis, Drineas,
and Magdon-Ismail 2014) and lp regression (for p ∈ [1, 2])
(Dasgupta et al. 2009). Thus it is very tempting to com-
bine these two types of techniques to develop faster methods
with theoretical or statistical guarantee for more constrained
optimization problems. Recently, quite a number of works
have successfully combined the two types of techniques.
For example, (Gonen, Orabona, and Shalev-Shwartz 2016;
Gonen and Shalev-Shwartz 2015) proposed faster methods
for Ridge Regression and Empirical Risk Minimization, re-
spectively, by using SVRG, Stochastic Gradient Descent
(SGD) and low rank approximation. (Zhang et al. 2013)
achieved guarantee for Empirical Risk Minimization by us-
ing random projection in dual problem.

In this paper, we revisit the preconditioning method for
solving large-scale constrained linear regression problem,
and propose faster algorithms for both the low (ϵ ≈ 10−1 ∼
10−4) and high (ϵ ≤ 10−8) precision cases by combining it
with some recent developments in sketching and optimiza-
tion. Our main contributions can be summarized as follows.

• For the low precision case, we first propose a novel al-
gorithm called HDpwBatchSGD (i.e., Algorithm 2) by
combining a new method called two step precondition-
ing with mini-batch SGD. Mini-batch SGD is a popular
way for improving the efficiency of SGD. It uses sev-
eral samples, instead of one, in each iteration and runs
the method on all these samples (simultaneously). Ide-
ally, we would hope for a factor of r speed-up on the
convergence if using a batch of size r. However, this is
not always possible for general case. Actually in some
cases, there is even no speed-up at all when a large-
size batch is used (Takác et al. 2013; Byrd et al. 2012;
Dekel et al. 2012). A unique feature of our method is its
optimal speeding-up with respect to the batch size, i.e. the
iteration complexity will decrease by a factor of b if we in-
crease the batch size by a factor of b. To further improve
the running time, we also use the Multi-epoch Stochas-
tic Accelerated mini-batch SGD (Ghadimi and Lan 2013)
to obtain another slightly different algorithm called HDp-
wAccBatchSGD, which has a time complexity lower than
that of the state-of-the-art technique (Yang et al. 2016).



Method Complexity for Unconstrained Complexity for Constrained Precision

(Drineas et al. 2011) O
(
nd log(dϵ ) + d3 log n log d+ d3 logn

ϵ

)
O
(
nd log n+ poly(d, 1

ϵ2 )
)

Low

pwSGD(Yang et al. 2016) O
(
nd log n+

d3 log( 1
ϵ )

ϵ

)
O
(
nd log n+

poly(d) log( 1
ϵ )

ϵ

)
Low

HDpwBatchSGD O
(
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)
O
(
nd log n+ d2 logn

ϵ2 ) + poly(d) logn
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)
Low

HDpwAccBatchSGD O
(
nd log n+ d2 logn

ϵ + d3 logn
rϵ + rd2 log 1

ϵ

)
O
(
nd log n+ d2 logn

ϵ + poly(d) logn
rϵ + rpoly(d) log 1

ϵ

)
Low

(Rokhlin and Tygert 2008; Avron, Maymounkov, and Toledo 2010) O(nd log d
ϵ + d3 log d) — High

IHS (Pilanci and Wainwright 2016) O
(
nd log d log 1

ϵ + d3 log 1
ϵ

)
O
(
(nd log d+ poly(d)) log 1

ϵ

)
High

Preconditioning+SVRG O(nd log d+ (nd+ d3) log 1
ϵ ) O(nd log d+ (nd+ poly(d)) log 1

ϵ ) High

pwGradient O(nd log d+ (nd+ d3) log 1
ϵ ) O(nd log d+ (nd+ poly(d)) log 1

ϵ ) High

Table 1: Summary of the time complexity of several linear regression methods for finding xt such that ||Axt − b||22 − ||Ax∗ −
b||22 ≤ ϵ. For sketching based methods, we use the Subsampled Randomized Hadamard Transform (SRHT) (Tropp 2011) as the
sketch matrix. All methods run in sequential environment. r is an input in our method. ’—’ means not applicable.

• The optimality on speeding-up further inspires us to think
about how it will perform if using the whole gradient, i.e.
projected Gradient Descent, (called pwGradient (i.e., Al-
gorithm 4)). A somewhat surprising discovery is that it
actually allows us to have an alternative implementation
of the Iterative Hessian Sketch (IHS) method, which is
arguably the state-of-the-art technique for the high preci-
sion case. Particularly, we are able to show that one step
of sketching is sufficient for IHS, instead of a sequence of
sketchings used in the current form of IHS. This enables
us to considerably improve the time complexity of IHS.

• Numerical experiments on large synthetic/real bench-
mark datasets confirm the theoretical analysis of HDpw-
BatchSGD and pwGradient. Our methods outperform ex-
isting ones in both low and high precision cases.

Related Work
There is a vast number of papers studying the large scale
constrained linear regression problem from different per-
spectives (Yang, Meng, and Mahoney 2016). We mainly fo-
cus on those results that have theoretical time complexity
guarantees (note that the time complexity cannot depend on
the condition number of A), due to their similar natures to
ours. We summarize these methods in Table 1.

For the low precision case, (Drineas et al. 2011) directly
uses sketching with a very large sketch size of poly( 1

ϵ2 ),
which is difficult to determine the optimal sketch size in
practice (later, we show that our proposed method avoids
this issue). The state-of-the-art technique is probably the
one in (Yang et al. 2016), which presents an algorithm for
solving the general lp regression problem and shares with
ours the first step of preconditioning. Their method then ap-
plies the weighted sampling technique, based on the lever-
age score and SGD, while ours first conducts a further step
of preconditioning, using uniform sampling in each itera-
tion, and then applies mini-batch SGD. Although their paper
mentioned the mini-batch version of their algorithm, there is
no theoretical guarantee on the quality and convergence rate,
while our method provides both and runs faster in practice.

Also we have to note that, even if we set r = 1 in HDpwAc-
cBatchSGD, the time complexity is less than that in pwSGD
when 1

ϵ > n. (Needell and Ward 2016) also uses mini-batch
SGD to solve the linear regression problem. Their method
is based on importance sampling, while ours uses the much
simpler uniform sampling; furthermore, their convergence
rate heavily depends on the condition number and batch par-
tition of A, which means that there is no fixed theoretical
guarantee for all instances.

For the high precision case, unlike the approach in
(Rokhlin and Tygert 2008), our method can be extended to
the constrained case. Compared with IHS (Pilanci and Wain-
wright 2016), ours uses only one step of sketching and thus
has a lower time complexity. Although a similar time com-
plexity can be achieved by using the preconditioning method
in (Yang, Meng, and Mahoney 2016) and SVRG, ours per-
forms better in practice. We notice that (Tang, Golbabaee,
and Davies 2017) has recently studied the large scale lin-
ear regression with constraints via (Accelerated) Gradient
Projection and IHS. But there is no guarantee on the time
complexity, and it is also unclear how to choose the best pa-
rameters. For these reasons, we do not compare it with ours
here.

Preliminaries
Let A be a matrix in Rn×d with ed > n > d and
d = rank(A), and denote Ai and Aj be its i-th row (i.e.,
Ai ∈ R1×d) and j-th column, respectively. (Note that our
proposed methods can be easily extended to the case of
d > rank(A).) Let ∥A∥2 and ∥A∥F be the spectral norm
and Frobenius norm of A, respectively, and σmin(A) be the
minimal singular value of A. In this section we will give sev-
eral definitions and lemmas that will be used throughout this
paper. Due to space limit, we leave all the proofs to the full
paper.

Randomized Linear Algebra
First we give the definition of (α, β, 2)-conditioned matrix.
Note that it is a special case of (α, β, p)-well conditioned
basis in (Yang, Meng, and Mahoney 2016).



Definition 1. ((α,β,2)-conditioned) (Yang et al. 2016)) A
matrix U ∈ Rn×d is called (α,β,2)-conditioned if ∥U∥F ≤
α and for all x ∈ Rd×1, β∥Ux∥2 ≥ ∥x∥2, i.e σmin(U) ≥ 1

β .

Note that if U is an orthogonal matrix, it is (
√
d,1,2)-

conditioned. Thus we can view an (α,β,2)-conditioned ma-
trix as a generalized orthogonal matrix. The purpose of in-
troducing the concept of (α,β,2)-conditioned is for obtaining
in much less time a matrix which can approximate the or-
thogonal basis of matrix A. Clearly, if we directly calculate
the orthogonal basis of A, it will take O(nd2) time. How-
ever we can get an (O(

√
d), O(1), 2)-conditioned matrix U

from A (called O(
√
d), O(1), 2)-conditioned basis of A) in

o(nd2) time, through Algorithm 1. Note that in practice we
can just set O(1) as a small constant and return R instead of
AR−1.

Algorithm 1 Constructing (O(
√
d),O(1),2)-conditioned ba-

sis of A
1: Construct an oblivious subspace embedding(sketch ma-

trix) S ∈ Rs×n with n > s > d that satisfies the fol-
lowing condition with high probability, ∀x ∈ Rd,

(1−O(1))∥Ax∥2 ≤ ∥SAx∥2 ≤ (1 +O(1))∥Ax∥2,

2: [Q,R]=QR-decomposition(SA), where Q ∈ Rs×d is an
orthogonal matrix. Then AR−1 is an O(

√
d),O(1),2)-

conditioned basis of A.
3: return AR−1 or R

Next, we give the definition of Randomized Hadamard
Transform (Tropp 2011), which is the tool to be used in the
second step of our preconditioning.

Definition 2. (Randomized Hadamard Transform) M =
HD ∈ Rn×n is called a Randomized Hadamard Tran-
form, where n is assumed to be 2s for some integer s,
D ∈ Rn×n is a diagonal Rademacher matrix (that is, each
Dii is drawn independently from {1,−1} with probability
1/2), and H ∈ Rn×n is an n × n Walsh-Hadamard Matrix
scaled by a factor of 1/

√
n, i.e.,

H =
1√
n
Hn, Hn =

(
Hn

2
Hn

2

Hn
2
−Hn

2

)
, H2 =

(
1 1
1 −1

)
.

Randomized Hadamard Transform has two important fea-
tures. One is that it takes only O(n log n) time to multiply
a vector, and the other is that it can “spread out” orthogonal
matrices.

Since an (α,β,2)-conditioned matrix can be viewed as an
approximate orthogonal matrix, an immediate question is
whether an (α,β,2)-conditioned matrix can also achieve the
same result. We answer this question by the following theo-
rem,
Theorem 1. Let HD be a Randomized Hadamard Trans-
form, and U ∈ Rn×d be an (α,β,2)-conditioned matrix.
Then, the following holds for any constant c > 1:

Pr{ max
i=1,2,...,n

∥(HDU)i∥2 ≥ (1 +
√
8 log(cn))

α√
n
} ≤ 1

c
.

(1)

By the above theorem, we can make each row of HDU
have no more than one value with high probability. Since
α = O(

√
d), the norm of each row is small. Also since H,D

are orthogonal, we have ∥HDUy − HDb∥2 = ∥Uy − b∥2
for any y.

Strongly Smooth SGD and Mini-batch SGD
Consider the following general case of a convex optimiza-
tion problem: minx∈W F (x) = Ei∼Dfi(x), where i is
drawn from the distribution of D = {pi}ni=1 and W is a
closed convex set. We assume the following.
Assumption 1. F (·) is L-Lipschitz. That is, for any x, y ∈
W ,

∥∇F (x)−∇F (y)∥2 ≤ L∥x− y∥2.
Assumption 2. F(x) has strong convexity parameter µ, i.e.,
⟨x− y,∇F (x)−∇F (y)⟩ ≥ µ∥x− y∥22,∀x, y ∈ W.

Now let the Stochastic Gradient Descent (SGD) update in
the (k + 1)-th iteration be

xk+1 = arg min
x∈W

ηk⟨∇fik(xk), x− xk⟩+
1

2
∥x− xk∥22

(2)
= PW(xk − ηk∇fik(xk)) (3)

where ik is drawn from the distribution D, x0 is the initial
number, and PW is the projection operator. If we denote
x∗ = arg min

x∈W
F (x), σ2 = sup

x∈W
Ei∼D∥∇fi(x)−∇F (x)∥22,

then we have the following theorem, given in (Lan 2012).
Theorem 2. If Assumption 1 hold, after T iterations of the
SGD iterations of (2) with fixed step-size

η = min(
1

2L
,

√
D2

W
2Tσ2

), (4)

where DW =
√

maxx∈W
1
2∥x∥

2
2 −minx∈W

1
2∥x∥

2
2. Then

the inequality EF (xavg
T )− F (x∗) ≤ 3

√
2DWσ√
T

is true, where

xavg
T =

∑T
i=1 xi

T . Which means after

T = Θ(
D2

Wσ2

ϵ2
) (5)

iterations ,we have EF (xavg
T )− F (x∗) ≤ ϵ.

Instead of sampling one term in each iteration, mini-batch
SGD samples several terms in each iteration and takes the
average. Below we consider the uniform sampling version,

min
x∈W

F (x) =
1

n

n∑
i=1

fi(x). (6)

Note that for a mini-batch of size r, let τ denote the sam-
pled indices and gτ =

∑
i∈τ ∇fi(x)

r , where each index
in τ is i.i.d uniformly sampled. Then, we have σ2

batch =

supx∈W Eτ∥gτ −∇F (x)∥22 ≤ σ2

r . This means that the vari-
ance can be reduced by a factor of r if we use a sample of
size r.
Remark 1. Note that our mini-batch sampling strategy is
different from that in (Needell and Ward 2016), which is to
partition all the indices into ⌈nr ⌉ groups and samples only
within one group in each iteration.



Two-step Preconditioning Mini-batch SGD
Main Idea
The idea of our algorithm is to use two steps of precondi-
tioning to reform the problem in the following way,
min
x∈W

f(x) = ∥Ax− b∥22 = min
y∈W′

∥Uy − b∥22 (7)

= ∥HDUy −HDb∥22 =
1

n

n∑
i=1

n∥(HDU)iy − (HDb)i∥22.

(8)
The first step of the preconditioning (7) is to get U , an
(O(
√
d),O(1),2)-conditioned basis of A (i.e., U = AR−1;

see Algorithm 1), which means that the function in problem
(7) is an O(d)-smooth (actually it is O(1)-smooth, see Ta-
ble 2) and O(1)-strongly convex function. The second step
of the preconditioning (8) is to use Randomized Hadamard
Transform to ‘spread out’ the row norm of U by Theorem
1. Then, we use mini-batch SGD with uniform sampling
for each iteration. We can show that x∗ = R−1y∗, where
y∗ = argminy∈W′ ∥HDUy −HDb∥22, andW ′ is the con-
vex set corresponding toW .

Algorithm
The main steps of our algorithm are given in the following
Algorithm 2.

Algorithm 2 HDpwBatchSGD(A,b,x0,T ,r,η,s)
Input: x0 is the initial point, r is the batch size, η is the
fixed step size, s is the sketch size, and T is the iteration
number.

1: Compute R ∈ Rd×d which makes AR−1 an
(O(
√
d), O(1), 2)-conditioned basis of A as in Algo-

rithm 1 by using a sketch matrix S with size s× n.
2: Compute HDA and HDb, where HD is a Randomized

Hadamard Transform.
3: for t← 1, . . . T do
4: Randomly sample an indices set τt of size r, where

each index in τt is i.i.d uniformly sampled.
5: cτt =

2n
r

∑
j∈τt

(HDA)Tj [(HDA)jxt−1 − (HDb)j ] =
2n
r (HDA)Tτt [(HDA)τtxt−1 − (HDb)τt ]

6: xt = argminx∈W
1
2∥R(xt−1 − x)∥22 + η⟨cτt , x⟩ =

PW(xt−1 − ηR−1(R−1)T cτt)
7: end for
8: return xavg

T =
∑T

i=1 xi

T

Note that the way of updating xt in Algorithm 2 is equiv-
alent to the updating procedure of yt for the reformed prob-
lem (8) (i.e., set y0 = R−1x0, then use mini-batch SGD and
let xt = R−1yt). There are several benefits if we update xt

directly.
• Directly updating yt needs additional O(nd2) time since

we have to compute AR−1 = U , while updating xt+1 can
avoid that, i.e., it is sufficient to just compute R.

• In practice, the domain setW of x is much more regular
than the domain set of y, i.e.,W ′ in (5). Thus it is much
easier to solve the optimization problem in Step 7.

In the above algorithm, Step 1 is the same as the first step
of pwSGD in (Yang et al. 2016). But the later steps are quite
different. Particularly, our algorithm does not need to esti-
mate the approximate leverage score of U for computing the
sampling probability in each iteration. It uses the much sim-
pler uniform sampling, instead of the weighted sampling. By
doing so, we need to compute HDA and HDb, which takes
only O(nd log n) time, is much faster than the O(nd2) time
required for exactly computing the leverage score of U , and
costs approximately the same time (i.e., O(nnz(A) log n))
for computing the approximate leverage score. The output
is also different as ours is the average of {xi}Ti=1. Also,
we note that in the experiment section, (Yang et al. 2016)
uses the exact leverage score instead of its approximation.
By Theorem 1 and 2, we can get an upper bound on σ2 and
our main result (note that supx∈W ∥Ax− b∥22 in the result is
determined by the structure of the original problem and thus
is assumed to be a constant here).
Theorem 3. Let A be a matrix in Rn×d, r be the batch size
and b be a vector in Rd. Let f(x) denote ∥Ax − b∥22. Then
with some fixed step size η in (??), we have

Ef(xavg
T )− f(x∗) ≤ 3

√
2DWσ√
rT

, (9)

where σ2 = O(d log(n) supx∈W ∥Ax − b∥22) with high
probability. That is, after T = Θ(d logn

rϵ2 ) iterations, Al-
gorithm 2 ensures the following with high probability,
E|f(xavg

T )− f(x∗)| ≤ ϵ.
The time complexity of our algorithm can be easily ob-

tained as

time(R) +O(nd log n+ timeupdate
d log n

rϵ2
),

where time(R) is the time for computing R in Step 1. Dif-
ferent sketch matrices and their time complexities for get-
ting R are shown in Table 2. Step 2 takes O(nd log n) time.
timeupdate is the time for updating xt+1 in Steps 5 and 6. Step
5 takes O(rd) time, while Step 6 takes poly(d) time since it
is just a quadratic optimization problem in d dimensions.
Thus, if we use SRHT as the sketching matrix S, the overall
time complexity of our algorithm is

O(nd log n+ d3 log d+ (poly(d) + rd)
d log n

rϵ2
). (10)

Further Reducing the Iteration Complexity
Theorem ?? does not make use of the properties of O(1)-
strongly convexity and condition number L

µ = O(1) of
the problem after the two-step preconditioning. We can ap-
ply a different first-order method to achieve an ϵ-error in
Θ(d logn

rϵ +log(1ϵ )) iterations, instead of Θ(d logn
rϵ2 ) iterations

as in Theorem ??. The preconditioning steps are the same,
and the optimization method is the multi-epoch stochas-
tic accelerated gradient descent, which was proposed in
(Ghadimi and Lan 2012; Ghadimi and Lan 2013). In stead of
using Theorem 2, we will use the following theorem whose
proof was given in (Ghadimi and Lan 2013).



Table 2: Time complexity for computing R in step 1 of Algo-
rithm 2, 3, 4 with different sketch matrix (Yang et al. 2016).
Sketch Matrix Time Complexity κ(AR−1)

Gaussian Matrix O(nd2) O(1)

SRHT(Pilanci
and Wainwright
2016)

O(nd log d+ d3 log d) O(1)

CountSketch O(nnz(A) + d4) O(1)

Sparse l2 Em-
bedding

O(nnz(A) log d+ d3 log d) O(1)

Theorem 4. If Assumption 1 and 2 hold and ϵ < V0, then
after O(

√
L
µ log(V0

ϵ ) + σ2

µϵ ) iterations of stochastic acceler-

ated gradient descent with O(log(V0

ϵ )) epochs, the output of
multi-epoch stochastic accelerated gradient descent xS sat-
isfies EF (xS)−F (x∗) ≤ ϵ, where V0 is a given bound such
that F (x0)− F (x∗) ≤ V0.

Thus, we can use a two-step preconditioning and multi-
epoch stochastic accelerated mini-batch gradient descent to
obtain an algorithm (called HDpwAccBatchSGD) similar to
Algorithm 2, as well as the following theorem. Due to the
space limit, we leave the details of the algorithm to the full
paper.

Theorem 5. Let A be a matrix in Rn×d, r be the batch size
and b be a vector in Rd. Let f(x) denote ∥Ax − b∥22, and
fix ϵ < V0. Then with high probability, after O(log(V0

ϵ ) +
d logn

rϵ ) iterations of stochastic accelerated gradient descent
with S = O(log(V0

ϵ )) epochs of HDpwAccBatchSGD, the
output xS satisfies EF (xS) − F (x∗) ≤ ϵ. Moreover, if we
take SRHT as the sketching matrix , the total time complexity
is

O(nd log n+
d2 log n

ϵ
+

poly(d) log n
rϵ

+rpoly(d) log
1

ϵ
).

(11)

Improved Iterative Hessian Sketch
Now, we go back to our results in (??) and (7). One ben-
efit of these results is that ϵ is independent of n and de-
pends only on poly(d) and log n. If directly using the Vari-
ance Reduced methods developed in recent years (such as
(Johnson and Zhang 2013)), we can get the time complexity
O((n + κ)poly(d) log 1

ϵ ). Comparing with these methods,
we know that HDpwBatchSGD and HDpwAccBatchSGD
are more suitable for the low precision and large scale
case. Recently (Pilanci and Wainwright 2016) introduced
the Iterative Hessian Sketch (IHS) method to solve the large
scale constrained linear regression problem (see Algorithm
3). IHS is capable of achieving high precision, but needs a
sequence of sketch matrices {St} (which seems to be un-
avoidable due to their analysis) to ensure the linear conver-
gence with high probability. Ideally, if we could use just one
sketch matrix, it would greatly reduce the running time. In

this section, we show that by adopting our preconditioning
strategy, it is indeed possible to use only one sketch matrix
in IHS to achieve the desired linear convergence with high
probability (see pwGradient(Algorithm 4)).

Our pwGradient algorithm uses the first step of precondi-
tioning (i.e., Step 1 of Algorithm 2) and then performs gradi-
ent decent (GD) operations, instead of the mini-batch SGD
in Algorithm 2 (note that we do not need the second step
of preconditioning since it is an orthogonal matrix). Since
the condition number after preconditioning is O(1) (see Ta-
ble 2), by the convergence rate of GD, we know that only
O(log 1

ϵ ) iterations are needed to attain ϵ-solution.

Algorithm 3 IHS(A,b,x0,s)(Pilanci and Wainwright 2015)
Input: x0 is the initial point, and s is the sketch size.

1: for t = 0, 1, · · · , T − 1 do
2: Generate an independent sketch matrix St+1 ∈

Rs×n as in step 1 of Algorithm 1. Compute M =
St+1A.

3: Perform the updating

xt+1 = arg min
x∈W

1

2
∥M(x− xt)∥22 + ⟨AT (Axt − b), x⟩

= PW(xt −M−1(M−1)TAT (Axt − b))

4: end for
5: return xT

Algorithm 4 pwGradient(A,b,x0,s, η)
Input: x0 is the initial point, s is the sketch size, and η is
the step size.

1: Compute R ∈ Rd×d which makes AR−1 an
O(
√
d), O(1), 2)-conditioned basis of A as in Algo-

rithm 1 by using a sketch matrix S with size s× n.
2: for t = 0, 1, · · · , T − 1 do
3: Perform the updating

xt+1 = arg min
x∈W

1

2
∥R(x− xt)∥22 + η⟨2AT (Axt − b), x⟩

= PW(xt − 2ηR−1(R−1)TAT (Axt − b))

4: end for
5: return xT

Theorem 6. Let f(x) = ∥Ax − b∥22. Then, for some step
size η = O(1) in pwGradient, the following holds,

f(xt)− f(x∗) ≤ (1−O(1))tO((f(x0)− f(x∗))) (12)

with high probability.

Below we will reveal the relationship between IHS and
pwGradient. Particularly, we will show that when η = 1

2 , the
updating in pwGradient with sketching matrix S is equiva-
lent to that of IHS with {St} = S. Let QR be the QR-
decomposition of St+1A = SA. Then, we have

(QR)−1((QR)−1)T = (R)−1(R−1)T .



Although they look like the same, the ideas behind them
are quite different. IHS is based on sketching the Hessian
and uses the second-order method of the optimization prob-
lem, while ours is based on preconditioning the original
problem and uses the first-order method. Thus we need step
size η, while IHS does not require it. As we can see from
the above, η = 1

2 is sufficient. One main advantage of our
method is that the time complexity is much lower than that
of IHS, since it needs only one step of sketching. If SRHT
is used as the sketch matrix, the complexity of our method
becomes O(nd log d+d3 log d+(nd+poly(d)) log 1

ϵ ) (see
Table 1 for comparison with IHS).

Numerical Experiments
In this section we present some experimental results of our
proposed methods (for convenience, we just use the slower
HDpwBatchSGD algorithm for the low precision case). We
will focus on the iteration complexity and running time. Ex-
periments confirm that our algorithms are indeed faster than
those existing ones. Our algorithms are implemented using
CountSketch as the sketch matrix S ∈ Rs×n in the step for
computing R−1. The Matlab code of CountSketch can be
found in (Wang 2015).

• HDpwBatchSGD, i.e. Algorithm 2. We use the step size
as described in Theorem 2 (note that we assume that the
step size is already known in advance).

• pwGradient, i.e. Algorithm 4. We set η = 1
2 as the step

size.

Baseline of Experiments

Table 3: Summary of Datasets used in the experiments.
Dataset Rows Columns κ(A) Sketch Size

Syn1 105 20 108 1000
Syn2 105 20 1000 1000
Buzz 5× 105 77 108 20000
Year 5× 105 90 3000 20000

In both the low and high precision cases, we select some
widely recognized algorithms with guaranteed time com-
plexities for comparisons. For the low precision case, we
choose pwSGD (Yang et al. 2016), which has the best
known time complexity, and use the optimal step size. We
also choose SGD and Adagrad for comparisons. For the
high precision case, we use a method called pwSVRG
for comparison, which uses preconditioning first and then
performs SVRG with different batch sizes (the related
method can be found in (Rokhlin and Tygert 2008)). Note
that since the condition number of the considered datasets
are very high, directly using SVRG or related methods
could lead to rather poor performance; thus we do not
use them for comparison (although (Tang, Golbabaee, and
Davies 2017) used SAGA for comparison, it was done af-
ter normalizing the datasets). We also compare our pro-
posed pwGradient algorithm with IHS. The code for SGD
and Adagrad can be found in (https://github.com/hiroyuki-
kasai/SGDLibrary). All the methods are implemented using

MATLAB. We measure the performance of methods by the
wall-clock time or iteration number. For each experiment,
we test every method 10 times and take the best. Also for
the low precision solvers, we firstly normalize the dataset.

The y-axis of each plot is the relative error
∥Axt−b∥2

2−∥Ax∗−b∥2
2

∥Ax∗−b∥2
2

in the low precision case and the

log relative error log(
∥Axt−b∥2

2−∥Ax∗−b∥2
2

∥Ax∗−b∥2
2

) in the high
precision case. Table 3 is a summary of the datasets and
sketch size used in the experiments. The datasets Year1

and Buzz2 come from UCI Machine Learning Repository
(Lichman 2013).

We consider both the unconstrained case and the con-
strained cases with ℓ1 and ℓ2 norm ball constraints. For the
constrained case, we first generate the optimal solution for
the unconstrained case, and then set it as the radius of balls.

Experiments on Synthetic Datasets

Figure 1: Iteration number of HDpwBatchSGD with differ-
ent batch size r on (from left to right) datasets Syn1 and
Syn2 (unconstrained case).

Figure 2: Experimental results on dataset Syn1 (uncon-
strained case); left is for the low precision solvers, right is
for the high precision solvers.

We generate a Gaussian vector x∗ as the response vector
and let b = Ax∗ + e, where e is a Gaussian noise with stan-
dard variance of 0.1. In each experiment, the initial value x0

is set to be the zero vector. We start with some numerical
experiments to gain insights to the iteration complexity and
relative error shown in Theorem ??, and verify them for the
unconstrained case using synthetic datasets Syn1 and Syn2.

1https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
2https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+



Figure 3: Experimental Results on dataset Year for the high precision solvers; left is for the unconstrained case, middle is for
the ℓ1 constrained case, and right is for the ℓ2 constrained case.

Later we determine the relative errors for the low and high
precision solvers, and plot the results in Figures 1 and 2.

Experiments on Real Datasets

We consider the unconstrained and the ℓ1 and ℓ2 constrained
linear regression problems on the Buzz dataset for both the
low and high precision cases and on the Year dataset for the
high precision case. The results are plotted in Figures 3, 4, 5
and 6, respectively.

Figure 4: Experimental results on dataset Buzz (uncon-
strained case); left is for the low precision solvers and right
is for the high precision solvers.

Figure 5: Experimental results on dataset Buzz for the high
precision solvers (constrained case); left is for the ℓ1 con-
strained case and right is for the ℓ2 constrained case.

Figure 6: Experimental results on dataset Buzz for the low
precision solvers (constrained case); left is for the ℓ1 con-
strained case and right is for the ℓ2 constrained case.

Results
From Figure 1, we can see that in both cases if the batch size
is increased by a factor of b = 2, the iteration complexity
approximately decreases by a factor of b = 2. This confirms
the theoretical guarantees of our methods. From other fig-
ures, we can also see that in both the high (Figures 2,3,4,
and 5) and the low precision (Figures 2,4, and 6) cases, our
methods considerably outperform other existing methods.
Particularly, in the low precision case, the relative error of
HDpwBatchSGD decreases much faster with a large batch
size (except for the ℓ2 constrained case in Figure 6). With a
large batch size, our method runs even faster than pwSGD
despite a relatively long the preconditioning time (due to
the second preconditioning step). This is because in prac-
tice CountSketch is faster than SRHT, especially when the
dataset is sparse. This also confirms the claim of our meth-
ods.

For the high precision case, experiments indicate that pw-
Gradient can even outperform the stochastic methods. Also,
as we mentioned earlier, pwGradient needs to sketch only
once. This enables it to run much faster than IHS, and still
preserves the high probability of success.

Conclusion
In this paper, we studied the large scale constrained linear
regression problem, and presented new methods for both



the low and high precision cases, using some recent devel-
opments in sketching and optimization. For the low preci-
sion case, our proposed methods have lower time complex-
ity than the state-of-the-art technique. For the high precision
case, our method considerably improves the time complex-
ity of the Iterative Hessian Sketch method. Experiments on
synthetic and benchmark datasets confirm that our methods
indeed run much faster than the existing ones.

Lemma 7. (Lipschitz Tail Bound(Ledoux 1997)) Let f be a
convex function on vectors having L-Lipschitz property, and
ϵ be a Rademacher vector. Then for any t ≥ 0, the following
inequality holds

P{f(ϵ) ≥ Ef(ϵ) + Lt} ≤ e−
t2

8 .

By lemma 6, we can prove our theorem 1.

Theorem 8. Let HD be a Randomized Hadamard Trans-
form, and U ∈ Rn×d be an (α,β,2)-conditioned matrix.
Then, the following holds for any constant c > 1

P{ max
i=1,2,...,n

∥(HDU)i∥2 ≥ (1 +
√
8 log(cn))

α√
n
} ≤ 1

c
.

(13)

Proof. The proof follows similar arguments in (Tropp
2011) for orthogonal matrices. Consider a fixed row in-
dex j ∈ {1, 2, . . . , n}. Let f(x) = ∥eTj Hdiag(x)U∥2 =

∥xT diag(eTj H)U∥2. Then f(x) is convex and ∥f(x) −
f(y)∥ ≤ ∥x − y∥2∥diag(eTH)∥2∥U∥2 ≤ α√

n
∥x − y∥2,

since each entry of H is either −1√
n

or 1√
n

. Thus f(x) is α√
n

-
Lipschitz. By the fact that f(ϵ) is a Rademacher function,
we have

Ef(ϵ) ≤ [Ef2(ϵ)]
1
2 = (E∥ϵT diag(eTj H)U∥22)

1
2

= ∥diag(eTj H)U∥F ≤ ∥diag(eTj H)∥2∥U∥F ≤
α√
n
.

Then by Lemma 1, taking t =
√
8 log(cn) and the union

for all arrow indices, we have the theorem.

Lemma 9. After two steps of preconditioning as in (7),
(8), the following holds with high probability (approximately
0.9) for the stochastic optimization problem: min g(y) =
Ei∼D′gi(y), where gi(y) = n∥(HDU)iy − (HDb)i∥22,
g(y) = ∥HDUy − HDb∥22, i ∼ D′ is uniformly sampled
from {1, 2, . . . , n}, and U is an (α, β, 2)-conditioned basis
of A.

µ ≥ 2

β2
, (14)

sup ∥(HDU)i∥22 ≤ α2(1 +
√
8 log 10n)2, (15)

σ2 ≤ 4α2(1 +
√

8 log(10n))2 sup
y∈W′

g(y) (16)

= 4α2(1 +
√
8 log(10n))2 sup

x∈W
∥Ax− b∥2 (17)

where the constant 10 comes from Theorem 2 with c = 10.

Proof. We know µ = 2σ2
min(HDU) = 2σ2

min(U) ≥ 2
β2 .

Since U is an (α, β, 2)-conditioned basis of A. By Theo-
rem 2, we know that with probability at least 0.9, the norm
of each row of HDU is smaller than α√

n
(1 +

√
8 log 10n).

Hence, we have

sup ∥(HDU)τi∥22 ≤
α2

n
(1 +

√
8 log cn)2.

For σ2 = supy∈W′ Ei∼D∥∇gi(y) − ∇g(y)∥22, we have the
following with probability at least 0.9,

σ2 = sup
y∈W′

Ej∼D∥2n(HDU)Tj ((HDU)jy − (HDb)j)∥22

− ∥2(HDU)T ((HDU)y −HDb)∥22

= 4n

n∑
j=1

∥((HDU)Tj ((HDU)jy
∗ − (HDb)j))∥22

− 4∥(HDU)T ((HDU)y −HDb)∥22
≤ 4n sup ∥(HDU)j∥22∥HDUy∗ −HDUb∥22
− σmin(HDU)2∥((HDU)y −HDb)∥22

≤ 4n
α2

n
(1 +

√
8 log(10n))2 sup

y∈W′
g(y).

where the last inequality comes from Theorem 2 and
σmin(HDU) = O(1). With Lemma 8 and Theorem 2, we
can now show our main theorem.

Theorem 10. Let A be a matrix in Rn×d and b be a vector
in Rd. Let f(x) denote ∥Ax−b∥22. Then with some fixed step
size η, we have

Ef(xavg
T )− f(x∗) ≤ 3

√
2DWσ√
rT

, (18)

where σ2 ≤ O(d log(n) supx∈W ∥Ax − b∥22). After T =

Θ(d logn
rϵ2 ) iterations with some step size η, Algorithm

2 ensures the following with high probability, we have
Ef(xT )− f(x∗) ≤ ϵ.

Proof. Consider {yi}Ti=1 updated by Lemma 8 with y0 =
Rx0. We first show by mathematical induction that yi =
Rxi and y∗ = Rx∗ for all i. Clearly, by the definition of yi,
this is true for i = 0. Assume that it is true for i = k. In
the (k + 1)-th iteration, we assume that the i-th sample in
the k-th iteration is obtained by using SGD. Then, we have
(denote m = n

r )

yk+1 = arg min
y∈W′

η⟨∇gτk(yk), y⟩+
1

2
∥y − yk∥22

= arg min
y∈W′

2mη
∑
j∈τk

((HDU)jR
−1xk − (HDb)j)

(HDA)Tj R
−1y +

1

2
∥y −Rxt∥22.



From Steps 5 and 6, we know that

xk+1 = arg min
x∈W

2mη
∑
j∈τk

((HDA)jxk − (HDb)j)

(HDA)jx+
1

2
∥Rx−Rxt∥22,

where W = R−1W ′. From above, we know that xk+1 =
R−1yk+1. This means that yi = Rxi is true for all i. Next,
by using the variance in the mini-batch SGD, and lemma
3, we know the σ2

batch = σ2

r , where σ2 is as in Lemma 8.

Then by Theorem 2 we get Eg(yavg
T )− y(y∗) ≤ 3

√
2DW′σ√
rT

,
replacing yT = RxT , y

avg
T = xavg

T and DW′ = DW (by the
definition), we get the proof.

Theorem 11. Let f(x) = ∥Ax − b∥2. Then, for some step
size η = O(1) in pwGradient, the following holds,

f(xt)− f(x∗) ≤ (1−O(1))tO((f(x0)− f(x∗))),

with high probability.

Proof. Similar to the proof of Theorem 4, we can show
that the updating step is just performing the projected gra-
dient descent operations on ∥AR−1y− b∥22 and thus xt+1 =
R−1yt+1. Since the condition number of U = AR−1

is O(1), by the convergence rate of gradient descent on
strongly convex functions (Nesterov 2013) and with step
size η = O(1), we know that

f(xt)− f(x∗) =∥Uyt − b∥22 − ∥Uy∗ − b∥22

≤ 2σ2
max(U)

2
(1−O(1))2k∥y0 − y∗∥22.

By the strongly convexity property, we know that
2σ2

min(U)
2 ∥y0 − y∗∥22 ≤ ∥Uy0 − b∥22 − ∥Uy∗ − b∥22 =

f(x0) − f(x∗). Also, by κ(U) = O(1) (see Table 2). We
get the theorem.

Details on HDpwAccBatchSGD
For the completeness of the paper, we first give the prelimi-
naries on accelerated stochastic gradient descent and multi-
epoch accelerated stochastic gradient descent method, more
can refer to (Ghadimi and Lan 2013). Now we consider the
uniform sampling version,

min
x∈W

F (x) =
1

n

n∑
i=1

fi(x). (19)

We assume F (·) is µ-strongly convex and L-smooth. In the
t-th iteration, the accelerated stochastic gradient descent is
the following:

x̃t = (1− qt)x̂t−1 + qtxt−1, (20)

xt = arg min
x∈W
{ηt[⟨∇fi(x̃t), x⟩+

µ

2
∥x̃t − x∥22] +

1

2
∥x− xt−1∥22}

(21)
x̂t = (1− αt)x̂t−1 + αtxt (22)

where the step size {qt}, {αt}, {ηt} are later defined and the
initial points satisfy x̂0 = x̃0 = x0.

Algorithm 5 Multi-epoch Stochastic Accelerated Gradient
Descent
Input: p0 ∈ W is the initial point, and a bound V0 such that
F (x0)− F (x∗) ≤ V0 is given, S is the epoch number.

1: for s = 0, 1, · · ·S do
2: Run Ns iterations of Stochastic Accelerated Gradi-

ent method with x0 = ps−1, αt = 2
t+1 , qt = αt, and

ηt = ηst, where

Ns = max{4

√
2L

µ
,

64σ2

3µV02−s
}

ηs = min{ 1

4L
,

√
3V02−(s−1)

2µσ2Ns(Ns + 1)2
}

3: Set ps = x̂Ns
, where x̂Ns

is get from step 1.
4: end for
5: return ps

Theorem 12. If Assumption 1 and 2 hold, the after
O(

√
L
µ log(V0

ϵ ) + σ2

µϵ ) iterations of stochastic accelerated

gradient descent with O(log(V0

ϵ )) epochs, the output of
multi-epoch stochastic accelerated gradient descent xS sat-
isfies EF (xS) − F (x∗) ≤ ϵ, here V0 is a given bound such
that F (x0)− F (x∗) ≤ V0.

Now we introduce our algorithm HDpwAccBatchSGD,
we have the following theorem,

Theorem 13. Denote F (x) = ∥Ax − b∥22, fix ϵ < V0, then
for HDpwAccBatchSGD, after O(log(V0

ϵ ) + d logn
rϵ ) itera-

tions of stochastic accelerated gradient descent with S =
O(log(V0

ϵ )) epochs, the output of multi-epoch stochastic ac-
celerated gradient descent xS satisfies EF (xS)− F (x∗) ≤
ϵ.

Proof. The proof is similar with Lemma 8 and Theorem 4.
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